
Page 1 of 14

CoBridge Security Review

Aura Audits

June 19th 2025 - June 25th 2025

Page 2 of 14

About

Aura Audits is a team of highly skilled smart contract security researchers dedicated to securing

blockchain protocols. With a proven track record of uncovering numerous vulnerabilities, our experts
deliver a thorough and detail-oriented audit process. While perfect security cannot be guaranteed, we

commit to applying our extensive knowledge and meticulous approach to ensure your protocol’s

robustness.

Disclaimer

A smart contract security review can never verify the complete absence of vulnerabilities. This is a
time, resource and expertise bound effort where we try to �nd as many vulnerabilities as possible. We

can not guarantee 100% security after the review or even if the review will �nd any problems with your
smart contracts. Subsequent security reviews, bug bounty programs and on-chain monitoring are

strongly recommended.

About Cobridge

Bridge Contract Summary: This is a cross-chain bridge contract that allows users to initiate transfers
by depositing ETH with calculated fees and provides an authorized release mechanism on the

destination chain. The contract implements signature-based validation for transfer requests with

expiration timestamps, owner-controlled parameters (min/max amounts, fees), and maintains counters
for initiated and released transactions. Key functionality includes fee calculation based on percentage

scaling, signature veri�cation using ECDSA recovery, and administrative controls for enabling/disabling
the bridge operations.

Risk Classi�cation

Severity Impact: High Impact: Medium Impact: Low

Likelihood: High Critical High Medium

Likelihood: Medium High Medium Low

Likelihood: Low Medium Low Low

Page 3 of 14

Impact

High - leads to a signi�cant material loss of assets in the protocol or signi�cantly harms a group of

users.

Medium - leads to a moderate material loss of assets in the protocol or moderately harms a group

of users.

Low - leads to a minor material loss of assets in the protocol or harms a small group of users.

Likelihood

High - attack path is possible with reasonable assumptions that mimic on-chain conditions, and

the cost of the attack is relatively low compared to the amount of funds that can be stolen or lost.

Medium - only a conditionally incentivized attack vector, but still relatively likely.

Low - has too many or too unlikely assumptions or requires a signi�cant stake by the attacker with
little or no incentive.

Action required for severity levels

Critical - Must �x as soon as possible (if already deployed)

High - Must �x (before deployment if not already deployed)

Medium - Should �x

Low - Could �x

Page 4 of 14

Findings Index

Severity Name Status

[H-01] Account Abstraction Wallet Users Can Lose Funds During Bridging
function Close

[M-01] Malicious Actor Can Execute Signature Replay Attacks Close

[L-01] Missing Sanity Checks on Scaled Fee Percent Close

[L-02] Improper Event Indexing Close

[L-03] Missing Reentrancy Guard in withdraw and release Acknowledged

[L-04] Outdated Pragma Close

[L-05] Centralization Risk Acknowledged

Page 5 of 14

Findings

[H-01] Account Abstraction Wallet Users Can
Lose Funds During Bridging function

Severity

Impact:
 High

Likelihood:
 Medium

Vulnerability Details

The Bridge contract's bridging function assumes msg.sender will have the same address on L2, which

fails for Account Abstraction (AA) wallets that use different addresses across chains. This causes

bridged tokens to be sent to an unreachable address on L2, permanently locking user funds.

The Bridge contract's bridging functionality contains a critical �aw when interacting with Account

Abstraction (AA) wallets. The vulnerability arises in the initiate() function, where the receiver (on
different chain) is set to msg.sender as seen during event emission without accounting for potential

address differences across chains for AA wallet users. Since AA wallets can have different addresses on

different chains, this implementation may cause bridged tokens to be sent to an address the user does
not control on the destination chain, resulting in permanent loss of funds.

Page 6 of 14

function initiate(

 uint256 destinationChainId,

 uint256 amountIn,

 uint256 amountOut,

 uint256 signatureExpirationTimestamp,

 bytes calldata signature

) external payable {

 require(isEnabled, "The bridge is disabled");

 require(block.chainid != destinationChainId, "Invalid destination

 require(amountIn >= minAmountIn, "Value is less that minAmountIn"

 require(amountIn <= maxAmountIn, "Value is more that maxAmountIn"

 require(signatureExpirationTimestamp >= block.timestamp, "Signatu

 uint256 calculatedFee = calculateFee(amountIn);

 require(msg.value == amountIn + calculatedFee, "Incorrent value")

 require(

 checkSignature(

 msg.sender,

 block.chainid.toString(),

 destinationChainId.toString(),

 amountIn.toString(),

 amountOut.toString(),

 calculatedFee.toString(),

 signatureExpirationTimestamp.toString(),

 signature

),

 "Invalid signature"

);

 emit Initiated(

 msg.sender,

 block.chainid,

 destinationChainId,

 amountIn,

 amountOut,

 calculatedFee,

 block.timestamp

);

 initialsCounter++;

 }

Page 7 of 14

Impact

AA wallet users risk losing their tokens permanently when bridging to different chains. The tokens will

be locked on the destination chain under an address derived from a different key scheme than the user's
AA wallet, making recovery impossible.

Recommendation

To prevent fund loss for AA wallet users, the contract should implement an explicit address resolution

mechanism. Instead of hardcoding msg.sender as the recipient, users should provide their intended L2
address as a parameter, with appropriate validation to ensure they retain control.

Page 8 of 14

[M-01] Malicious Actor Can Execute Signature
Replay Attacks

Severity

Impact:
 Medium
 Likelihood:

 Medium

Vulnerability Details

The Bridge contract contains a critical vulnerability in its signature veri�cation mechanism that allows

malicious actors to execute replay attacks by reusing previously valid signatures. The vulnerability
stems from the inadequate signature validation logic in the checkSignature() function, which fails

to implement proper nonce management and signature tracking mechanisms as outlined in EIP-712
standards.

The contract constructs signature messages by concatenating string representations of transaction

parameters using a simple separator-based approach. This method lacks several essential security
components that prevent signature reuse. The signature veri�cation process in checkSignature()

creates a message hash by combining the sender address, source and destination chain IDs, amounts,
fees, and expiration timestamp into a single byte array using abi.encodePacked(). However, this

implementation does not include any unique transaction identi�ers, nonces, or mechanisms to track

previously used signatures that would prevent the same signature from being valid across multiple
transactions.

Impact

While the current implementation of the Bridge contract requires users to provide msg.value equal to
amountIn + calculatedFee in the initiate() function, which limits the immediate exploitability of

signature replay attacks, this vulnerability represents a signi�cant security design �aw that could

become critical in future contract iterations or upgrades.

The primary concern lies in the fundamental weakness of the signature veri�cation system, which

violates established security principles for cryptographic authorization. This design �aw creates

Page 9 of 14

potential attack vectors that could be exploited if the contract undergoes modi�cations, upgrades, or if

similar signature veri�cation logic is reused in other contexts where payment requirements differ.

Recommendation

The vulnerability requires immediate remediation through implementation of EIP-712 structured data

signing standards combined with robust nonce management and signature tracking mechanisms. The
current string-based signature construction should be completely replaced with a standardized

approach that provides cryptographic protection against replay attacks.

Page 10 of 14

[L-01] Missing Sanity Checks on Scaled Fee
Percent

Severity

Impact:
 Low

Likelihood:
 Low

Vulnerability Detail

The contract allows the owner to set scaledFeePercent to an arbitrary value without bounds. This could

lead to fee values exceeding 100% or becoming abusive.

Impact

Users may unknowingly pay excessive fees, even exceeding the transferred amount.

Recommendation

Add a maximum cap on scaledFeePercent. Example (for max 100% fee):

require(newScaledFeePercent <= 100 * FEE_PERCENT_SCALING_FACTOR, "Fee exceeds 100%");

Page 11 of 14

[L-02] Improper Event Indexing

Severity

Impact:
 Low

 Likelihood:
 Low

Vulnerability Details

Key event parameters like accountAddress in Initiated and Released are not indexed, reducing their
utility in off-chain indexing or event log searches.

Impact

Di�culty in tracking and �ltering bridge activity on explorers or subgraphs

Recommendation

Index important parameters like so:

event Initiated(address indexed accountAddress, ...);

event Released(address indexed accountAddress, ...);

Page 12 of 14

[L-03] Missing Reentrancy Guard in withdraw
and release

Severity

Impact:
 Low

Likelihood:
 Low

Vulnerability Details

The Withdrawable.withdraw and Bridge.release functions transfer ETH using low-level .call without

reentrancy protection.

Impact

affect the integrity of bridge operations and funds reserved for legitimate users.

Recommendation

Add ReentrancyGuard from OpenZeppelin and apply nonReentrant to withdraw and releas

Page 13 of 14

[L-04] Outdated Pragma

Severity

Impact:
 Low

Likelihood:
 Low

Vulnerability Details

The smart contract is using an outdated version of the Solidity compiler speci�ed by the pragma
directive i.e. 0.8.26. Solidity is actively developed, and new versions frequently include important

security patches, bug �xes, and performance improvements.

Impact

Using an outdated version exposes the contract to known vulnerabilities that have been addressed in
later releases. Additionally, newer versions of Solidity often introduce new language features and

optimizations that improve the overall security and e�ciency of smart contracts.

Recommendation

It is suggested to use the 0.8.29 pragma version.

Page 14 of 14

[L-05] Centralization Risk

Severity

Impact:
 Low

Likelihood:
 Low

Vulnerability Details

The current design of the contracts introduces signi�cant centralization risk by concentrating critical
powers in the hands of the owner and the authorized signer. The owner has unilateral authority over key

operational and �nancial parameters, including:

Con�guring fees through setMinFee, setScaledFeePercent, setMinAmountIn, and setMaxAmountIn.

Enabling or disabling the bridge entirely via setEnabled. Designating or changing the

authorizedAddress, which controls fund releases. Withdrawing all funds from the contract at any time.

The authorized signer (as set by the owner) has full control over the release of funds to users through

the release function.

Impact

If the private key of the authorized signer is compromised or the owner acts maliciously, funds can be
drained or bridged arbitrarily.

Recommendation

Implement a multi-signature wallet (e.g., Gnosis Safe) as the owner.

